
VSIPL++: Parallel Performance

Mark Mitchell Jeffrey D. Oldham
CodeSourcery, LLC CodeSourcery, LLC

mark@codesourcery.com oldham@codesourcery.com

May 27, 2004

1 Introduction

VSIPL++1 is the object-oriented “next-generation” version of the Vector Signal and Image Pro-
cessing Library (VSIPL).2 Like VISPL, VSIPL++ specifies an Application Programming Interface
(API) for use in the development of high-performance numerical applications, with a particular focus
on embedded real-time systems performing signal processing and image processing. VSIPL++ con-
tains a number of improvements relative to VSIPL including a simpler, more intuitive programming
model, simpler syntax, and greater flexibility and extensibility. The most significant of VSIPL++’s
improvements is its support for multi-processor computation. This parallel support requires only
that the user specify the way in which data should be distributed across processors. The VSIPL++
library automatically manages the transmission of data between the processors as necessary to ef-
fectively perform the desired computations.

CodeSourcery was awarded funding under the Air Force Small Business Investment Research
(SBIR) program to develop a prototype version of the parallel functionality described in the
VSIPL++ specification and to obtain measurements of VSIPL++ performance when executing on
parallel systems.3 Our prototype implementation achieves a near-linear speedup on multi-processor
systems demonstrating that, despite the high level of abstraction present in VSIPL++, it is nev-
ertheless possible to obtain excellent performance. Thus, VSIPL++ has the potential to allow
programmers to easily and rapidly develop systems that are both highly portable and highly effi-
cient. In our presentation, we will describe the parallel VSIPL++ programming model, our parallel
performance benchmark, and the results we obtained.

2 Benchmark Description

Beamforming is the detection of energy propagating in a particular direction while rejecting energy
propagating in other directions. A beamformer consists of an array of sensors capturing signals and a
signal processing algorithm to extract signals from one or more particular directions and one or more
particular frequencies. The k-Ω beamformer we consider assumes uniform spacing of omnidirectional
individual sensors along the x-axis. No assumptions about the signal’s structure are made except
that the signal is periodic and that the signal source is sufficiently far away that the signal appears
planar to the sensors, and noise is assumed to be uniformly distributed across the signal.

The beamformer computes the power of the incoming signal for various bearings (k) and fre-
quencies (Ω). Those k-Ω pairs where the power is strongest indicate incoming signals. Each sensor
samples the input signal over time. After enough samples have been obtained, a computation is
performed (involving the inputs from all of the sensors) to determine the power for the k-Ω pairs.
First, FIR filters remove higher-order frequencies from the signal matrix. Then a real-to-complex
FFT is applied to the rows of the matrix, optionally the data is reordered into a column-major
matrix, and finally a complex-to-complex FFT is applied to the columns. Generally, the collection
of data and determining of power is repeated multiple times. The final power reported for a given
k-Ω pair is the average of that computed for the various iterations of the process.

1http://www.hpec-si.org/private/vsipl++specification.html
2http://www.vsipl.org
3SBIR Contract FA87450-04-C-0017

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
VSIPL++: Parallel Performance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
CodeSourcery, LLC

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

3 Implementation

We implemented the beamformer using several different programming methodologies. One imple-
mentation was written using C and VSIPL. After that implementation was complete, we developed
a C++ and VSIPL++ implementation. The VSIPL and VSIPL++ implementations are similar in
structure, but the VSIPL++ implementation is shorter than the VSIPL implementation because of
the higher levels of abstraction provided by VSIPL++. Each implementation runs the k-Ω beam-
former multiple times and computes a “running average” power spectra.

We modified the VSIPL++ reference implementation, developed by CodeSourcery under contract
from MIT Lincoln Laboratory, to contain support for a subset of the functionality being considered
for the parallel VSIPL++ specification. In particular, we created a data storage abstraction called
DistributedBlock to represent a single one- or two-dimensional array that is stored across multiple
processors. We specialized VSIPL++ algorithms, e.g., computing FIR filters and FFTs, to perform
only local computations when operating on a DistributedBlock. We also modified VSIPL++ to
implement a specialization of the two-dimensional FFT algorithm so that, when the input is a row-
distributed DistributedBlock and the output is a column-distributed block, the algorithm performs
the “corner-turn” required.

The VSIPL++ specification is written so as to be independent of any particular message-passing
or threading system. However, in our implementation we chose to use the popular Message Passing
Interface (MPI)4 to transmit data between cooperating processors.

After making these modifications to the VSIPL++ implementation, we made minor changes to
our VSIPL++ benchmark program. These changes consisted only of modifications to the types used
to declare particular arrays in the benchmark program. For example, some arrays were modified to
use DistributedBlock to indicate distribution across processors. The types of these arrays indicate
the arrays are distributed by rows or columns.

4 Results

The following table demonstrates that we were able to obtain a near-linear speedup with parallel
VSIPL++ relative to serial VSIPL++ and VSIPL. Times are shown for the VSIPL implementation
of the benchmark, the serial VSIPL++ implementation, and the parallel VISPL++ implementation
with one and two processors. Times for two hundred iterations of one problem instance are presented.
Times for other instances are similar and will be presented in the extended version of this paper. In
all cases, the times were obtained by running on a dual-processor Intel Pentium 4 Xeon GNU/Linux
machine. The times given reflect only time spent in the execution of the beamforming computations.
They do not include time required for initialization and finalization of the application and its libraries.
All times shown are “wall-clock time,” i.e., the total number of seconds required to execute the
beamformer including time spent in the operating system kernel.

serial, no corner turn distributed VSIPL++
VSIPL VSIPL++ 1-processor 2-processor

FIR filter 20.7 20.7 + 0.1 20.7 + 0.3 20.7/2 + 0.2
1st FFT 12.7 12.7 + 0.1 12.7 + 0.0 12.7/2 + 0.3
Corner Turn — — 6.2 + 2.9 6.0 + 8.9
2nd FFT 10.0 + 9.2 10.0 + 9.1 10.0 10.0/2 + 0.1

The corner-turn times indicate the seconds required to transpose a row-major matrix to a column-
major matrix plus the time for an MPI All-to-All computation. With one processor, only the
transpose occurs. With two processors, MPI communication also occurs. The serial implementations
do not perform the transpositions, leading to an increase in the time for the second FFT.

4http://www-unix.mcs.anl.gov/mpi/

Abstract Submission Details

1. Title: VSIPL++: Parallel Performance

2. Authors:

• Mr. Mark Mitchell
CodeSourcery, LLC
9978 Granite Point Ct
Granite Bay, CA 95746
+1.916.791.8304 (voice)
+1.916.914.2066 (fax)
mark@codesourcery.com
USA citizenship

• Dr. Jeffrey D. Oldham
CodeSourcery, LLC
144 Wyandotte Dr
San Jose, CA 95123-3727
+1.408.578.5684 (voice)
+1.408.578.5684 (fax)
oldham@codesourcery.com
USA citizenship

3. First Author: Mitchell
Corresponding Author: Oldham
Presenting Author: Oldham

4. Submit for any session.

5. Prefer talk, not poster.

6. Work areas:

• Middleware Libraries and Application Programming Interfaces

• Software Architectures, Reusability, Scalability, and Standards

VSIPL++: Parallel
Performance

HPEC 2004

CodeSourcery, LLC
September 30, 2004

1

Challenge

“Object oriented technology reduces
software cost.”

“Fully utilizing HPEC systems for SIP
applications requires managing operations
at the lowest possible level.”

“There is great concern that these two
approaches may be fundamentally at
odds.”

2

Parallel Performance Vision

VSIPL++
API SIMD

Support

Multiprocessor
SupportSIP

Program
Code

“Automated to reduce
implementation cost.”

“Drastically reduce the performance
penalties associated with deploying
object-oriented software on high
performance parallel embedded
systems.”

3

Advantages of VSIPL
Portability

Code can be reused on any system for which a VSIPL
implementation is available.

Performance
Vendor-optimized implementations perform better than
most handwritten code.

Productivity
Reduces SLOC count.
Code is easier to read.
Skills learned on one project are applicable to others.
Eliminates use of assembly code.

4

Limitations of VSIPL
Uses C Programming Language

“Modern object oriented languages (e.g., C++) have
consistently reduced the development time of software
projects.”
Manual memory management.
Cumbersome syntax.

Inflexible
Abstractions prevent users from adding new high-
performance functionality.
No provisions for loop fusion.
No way to avoid unnecessary block copies.

Not Scalable
No support for MPI or threads.
SIMD support must be entirely coded by vendor; user
cannot take advantage of SIMD directly.

5

Parallelism: Current Practice

MPI used for communication, but:
MPI code often a significant fraction of
total program code.
MPI code notoriously hard to debug.
Tendency to hard-code number of
processors, data sizes, etc.

Reduces portability!

Conclusion: users should specify only data
layout.

6

Atop VSIPL’s Foundation
VSIPL VSIPL++

Open Standard: Specification, Reference Implementation

Optimized Vendor Implementations: High Performance

C Programming Language C++: OOP, memory
management

Extensible:
Operators, data formats, etc.Limited Extensibility

Scalable Multiprocessor
ComputationSerial

7

Leverage VSIPL Model

Same terminology:
Blocks store data.
Views provide access to data.
Etc.

Same basic functionality:
Element-wise operations.
Signal processing.
Linear algebra.

8

VSIPL++ Status
Serial Specification: Version 1.0a

Support for all functionality of VSIPL.
Flexible block abstraction permits varying data storage
formats.
Specification permits loop fusion, efficient use of
storage.
Automated memory management.

Reference Implementation: Version 0.95
Support for functionality in the specification.
Used in several demo programs — see next talks.
Built atop VSIPL reference implementation for maximum
portability.

Parallel Specification: Version 0.5
High-level design complete.

9

k-Ω Beamformer

ω1

ω2

Input:
Noisy signal
arriving at a row of
uniformly
distributed
sensors.

Output:
Bearing and
frequency of signal
sources.

10

SIP Primitives Used
Computation:

FIR filters
Element-wise operations (e.g, magsq)
FFTs
Minimum/average values

Communication:
Corner-turn

All-to-all communication

Minimum/average values
Gather

11

Computation

1. Filter signal to remove high-
frequency noise. (FIR)

2. Remove side-lobes resulting from
discretization of data. (mult)

3. Apply Fourier transform in time
domain. (FFT)

4. Apply Fourier transform in space
domain. (FFT)

5. Compute power spectra. (mult, magsq)

12

Diagram of the Kernel
input weights

13

FIR
*

row-wise
FFT

magsq,
*1/n

one row
per sensor

column-wise
FFT

Add this
matrix to
the sum.

optional
corner
turn

“corner turn” from sensor
domain to time domain

removes side lobes

VSIPL Kernel

Seven statements required:

for (i = n; i > 0; --i) {
filtered = filter (firs, signal);
vsip_mmul_f (weights, filtered, filtered);
vsip_rcfftmpop_f (space_fft, filtered,

fft_output);
vsip_ccfftmpi_f (time_fft, fft_output);
vsip_mcmagsq_f (fft_output, power);
vsip_ssmul_f (1.0 / n, power);
vsip_madd_f (power, spectra, spectra);

}

14

15

VSIPL++ Kernel
One statement required:

No changes are required for distributed operation.

for (i = n; i > 0; --i)
spectra += 1/n *
magsq (
time_fft (space_fft (weights *

filter (firs,
signal)));

Distribution in User Code

Serial case:

Parallel case:

User writes no MPI code.

Matrix<float_t, Dense<2, float_t> >
signal_matrix;

typedef Dense<2, float_t> subblock;
typedef Distributed<2, float_t, subblock, ROW>
Block2R_t;

Matrix<float_t, Block2R_t> signal_matrix;

16

VSIPL++ Implementation

Added DistributedBlock:
Uses a “standard” VSIPL++ block on
each processor.
Uses MPI routines for communication
when performing block assignment.

Added specializations:
FFT, FIR, etc. modified to handle
DistributedBlock.

17

Performance Measurement

Test system:
AFRL HPC system
2.2GHz Pentium 4 cluster

Measured only main loop
No input/output

Used Pentium Timestamp Counter
MPI All-to-all not included in timings

Accounts for 10-25%

18

VSIPL++ Performance

0.1

1

10

100

1000

Problem Size

S
e

co
n

d
s

VSIPL 3.3 15 64 306

VSIPL++ 3.5 15 66 314

|| VSIPL++ (1) 3.6 15 63 277

|| VSIPL++ (2) 1.9 9 37 165

|| VSIPL++ (4) 0.9 4 19 78

|| VSIPL++ (8) 0.4 2 9 40

256x512 512x1024 1024x2048 2048x4096

19

Parallel Speedup

-15%

-10%

-5%

0%

5%

10%

15%

Problem Size

O
v

e
rh

e
a

d
 C

o
m

p
a

re
d

to
 L

in
e

a
r

S
p

e
e

d
u

p

VSIPL 0% 0% 0% 0%

VSIPL++ 1% 0% 0% 0%

|| VSIPL++ (1) 6% 0% -6% -14%

|| VSIPL++ (2) 8% 14% 6% -6%

|| VSIPL++ (4) 3% 11% 5% -7%

|| VSIPL++ (8) 1% 4% 5% -8%

256x512 512x1024 1024x2048 2048x4096

2 processes

4 processes

8 processes

1 process

VSIPL, VSIPL++

perfect linear speedup

10% slower than
perfect linear speedup

10% faster than
perfect linear speedup

Corner turn improves execution.

Minimal parallel overhead.

20

Conclusions

VSIPL++ imposes no overhead:
VSIPL++ performance nearly identical
to VSIPL performance.

VSIPL++ achieves near-linear
parallel speedup:

No tuning of MPI, VSIPL++, or
application code.

Absolute performance limited by
VSIPL implementation, MPI
implementation, compiler.

21

VSIPL++

Visit the HPEC-SI website
http://www.hpec-si.org

for VSIPL++ specifications
for VSIPL++ reference
implementation
to participate in VSIPL++
development

22

VSIPL++: Parallel
Performance

HPEC 2004

CodeSourcery, LLC
September 30, 2004

23

	Presentation:
	Agenda:
	Abstract:

